A Turán type problem for interval graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ordered Turán Problem for Bipartite Graphs

Let F be a graph. A graph G is F -free if it does not contain F as a subgraph. The Turán number of F , written ex(n, F ), is the maximum number of edges in an F -free graph with n vertices. The determination of Turán numbers of bipartite graphs is a challenging and widely investigated problem. In this paper we introduce an ordered version of the Turán problem for bipartite graphs. Let G be a gr...

متن کامل

On a Ramsey-Turán type problem

Denote by I(G) the maximal number of independent points in a graph G and let or(G) = I(G), where G is the complement of G. Thus a(G) is the maximal p for which G contains a K, , a complete graph with p vertices. Denote byf(n, k, 1) the maximal m for which there is a graph with n points and m edges such that or(G) < k and I(G) < I. The function f(n, k, I) was introduced and investigated by Erdii...

متن کامل

Turán Problems for Bipartite Graphs ∗

We consider an infinite version of the bipartite Turán problem. Let G be an infinite graph with V (G) = N, and let Gn be the n-vertex subgraph of G induced by the vertices {1, 2, . . . , n}. We show that if G is K2,t+1-free, then for infinitely many n, e(Gn) ≤ 0.471 √ tn3/2. Using the K2,t+1-free graphs constructed by Füredi, we construct an infinite K2,t+1-free graph with e(Gn) ≥ 0.23 √ tn3/2 ...

متن کامل

A Turán Theorem for Random Graphs Dean of the Graduate School Date a Turán Theorem for Random Graphs a Turán Theorem for Random Graphs

of a thesis submitted to the Faculty of the Graduate School of Emory University in partial fulfillment of the requirements of the degree of Master of Science Department of Mathematics and Computer Science

متن کامل

A Ramsey-type problem and the Turán numbers

For each n and k, we examine bounds on the largest number m so that for any k-coloring of the edges of Kn there exists a copy of Km whose edges receive at most k − 1 colors. We show that for k ≥ √ n+ Ω(n), the largest value of m is asymptotically equal to the Turán number t(n, b ( n 2 ) /kc), while for any constant > 0, if k ≤ (1 − ) √ n then the largest m is asymptotically larger than that Tur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1979

ISSN: 0012-365X

DOI: 10.1016/0012-365x(79)90155-9